sábado, 12 de marzo de 2011

Los cromosomas sexuales o heterocromosomas son cromosomas

Los cromosomas sexuales o heterocromosomas son cromosomas de organismos eucariontes que están representados diferentemente en los dos sexos.

Los cromosomas sexuales típicamente son designados como cromosoma X y como cromosoma Y.

En muchos organismos, un sexo posee un par de cromosomas idénticos y el sexo opuesto posee un par de cromosoma visiblemente diferente, tanto estructural como funcionalmente. Estos cromosomas reciben el nombre de cromosomas sexuales o heterocromosomas y como se siguen apareando en la meiosis se consideran cromosomas homólogos.

Figura

En seres humanos, por ejemplo, el sexo hembra tiene dos cromosomas X (figura 1), en cambio, el sexo macho tiene un cromosoma X y un cromosoma Y. Así la formula genética para la hembra será AAXX y para el macho AAXY, donde A representa a una de las series de autosomas.

Similarmente, en la mosca de la fruta Drosophila melanogaster, el sexo hembra es XX y el macho es XY(Figura 2).

Figura 2.

Durante la meiosis, las hembras sólo producen gametos del tipo AX, es decir, llevan una serie de autosomas y un heterocromosoma X. En cambio, los machos producen un 50% de gametos del tipo AX y un 50% de gametos del tipo AY. Por esta razón el macho es llamado el sexo heterogamético y la hembra el sexo homogamético.

En algunos organismos, el macho es homogamético y la hembra es heterogamética. Como en el caso ZW, donde los machos son homogaméticos ZZ y las hembras heterogameticas ZW. Esta situación se presenta en aves y algunos peces. (Las letras X Y y Z W son notaciones cromosómicas y no se relaciona con el tamaño o la forma de estos cromosomas.).

También existe el caso X0, como en algunos saltamontes y escarabajos, donde hay un solo cromosoma sexual, las hembras son generalmente XX y los machos X0.

Por último está el caso de los cromosomas múltiples, donde varios cromosomas X e Y se hayan implicados en la determinación del sexo, como en algunos chinches y escarabajos. En general, el genotipo determina el tipo de gónada, que a su vez controla el fenotipo del organismo mediante la producción de hormonas

Una vez que se comprobó que el ADN era el material hereditario y se descifró su estructura, lo que quedaba era determinar como el ADN copiaba su información y como la misma se expresaba en el fenotipo. Matthew Meselson y Franklin W. Stahl diseñaron el experimento para determinar el método de la replicación del ADN. Tres modelos de replicación era plausibles.

1. Replicación conservativa durante la cual se produciría un ADN completamente nuevo durante la replicación.

2. En la replicación semiconservativa se originan dos moléculas de ADN, cada una de ellas compuesta de una hebra de el ADN original y de una hebra complementaria nueva. En otras palabras el ADN se forma de una hebra vieja y otra nueva. Es decir que las hebras existentes sirven de molde complementario a las nuevas.


3. La replicación dispersiva implicaría la ruptura de las hebras de origen durante la replicación que, de alguna manera se reordenarían en una molécula con una mezcla de fragmentos nuevos y viejos en cada hebra de ADN.

http://www.biologia.edu.ar/im-index/linea.gif

El experimento de Meselson-Stahl consiste en cultivar la bacteria Escherichia coli en un medio que contenga nitrógeno pesado (15Nitrógeno que es mas pesado que el isótopo mas común: el 14Nitrógeno ). La primera generación de bacterias se hizo crecer en un medio que únicamente contenía 15Nitrógeno como fuente de N. La bacteria se transfirió luego a un medio con 14N. Watson y Crick habían pronosticado que la replicación del ADN era semiconservativa, de ser así el ADN extraído de las bacterias luego de cultivarlas por una generación en 14N tendría un peso intermedio entre el ADN extraído del medio con 15N y el del extraído de medio con 14N y así fue.

Los detalles del experimento que incluye un proceso de ultracentrifugación en cloruro de Cesio (CeCl2) puede encontrarse en el Curtis.

La replicación del ADN, que ocurre una sola vez en cada generación celular, necesita de muchos "ladrillos", enzimas, y una gran cantidad de energía en forma de ATP (recuerde que luego de la fase S del ciclo celular las células pasan a una fase G a fin de, entre otras cosas, recuperar energía para la siguiente fase de la división celular). La replicación del ADN en el ser humano a una velocidad de 50 nucleótidos por segundo, en procariotas a 500/segundo. Los nucleótidos tienen que se armados y estar disponibles en el núcleo conjuntamente con la energía para unirlos.

La iniciación de la replicación siempre acontece en un cierto grupo de nucleótidos, el origen de la replicación, requiere entre otras de las enzimas helicasas para romper los puentes hidrógeno y las topoisomerasas para aliviar la tensión y de las proteínas de unión a cadena simple para mantener separadas las cadenas abiertas.

Una vez que se abre la molécula, se forma una área conocida como "burbuja de replicación" en ella se encuentran las "horquillas de replicación" . Por acción de la la ADN polimerasa los nuevos nucleótidos entran en la horquilla y se enlazan con el nucleótido correspondiente de la cadena de origen (A con T, C con G). Los procariotas abren una sola burbuja de replicación, mientras que los eucariotas múltiples. El ADN se replica en toda su longitud por confluencia de las "burbujas".

Dado que las cadenas del ADN son antiparalelas, y que la replicación procede solo en la dirección 5' to 3' en ambas cadenas, numerosos experimentos mostraron que, una cadena formará una copia continua, mientras que en la otra se formarán una serie de fragmentos cortos conocidos como fragmentos de Okazaki . La cadena que se sintetiza de manera continua se conoce como cadena adelantada y, la que se sintetiza en fragmentos, cadena atrasada.

Para que trabaje la ADN polimerasa es necesario la presencia, en el inicio de cada nuevo fragmento, de pequeñas unidades de ARN conocidas como cebadores, a posteriori, cuando la polimerasa toca el extremo 5' de un cebador, se activan otras enzimas, que remueven los fragmentos de ARN, colocan nucleótidos de ADN en su lugar y, una ADN ligasa los une a la cadena en crecimiento.

Estructura

* Las cromátidas: Son estructuras idénticas en morfología e información ya que contienen cada una una molécula de ADN. Las cromátidas están unidas por el centrómero. Morfológicamente se puede decir que el cromosoma es el conjunto de dos cromátidas y genéticamente cada cromátida tiene el valor de un cromosoma. Estructuralmente, cada cromátida está constituida por un esqueleto proteico, situado en el interior, alrededor del cual se disponen muy apelotonados el ADN y las proteínas que forman el cromosoma.

* El centrómero: Es la región que se fija al huso acromático durante la mitosis. Se encuentra en un estrechamiento llamada constricción primaria, que divide a cada cromátida del cromosoma en dos brazos. En el centrómero se encuentran los cinetocoros: zonas discoidales situadas a ambos lados del centrómero que durante la división celular tienen como función hacer que los microtúbulos del huso se unan a los cromosomas. Los cinetocoros son también centros organizadores de microtúbulos, igual que los centriolos o el centrosoma de las células vegetales.

* Los telómeros: Al extremo de cada brazo del cromosoma se le denomina telómero. El ADN de los telómeros no se transcribe y en cada proceso de división celular se acorta. Cuando los telómeros desaparecen el cromosoma sigue acortándose y la célula pierde información genética útil y degenera. Los telómeros serían, por lo tanto, una suerte de "reloj celular" que determinaría el número de ciclos celulares que puede tener una célula. En las células cancerosas, una enzima, la telomerasa, regenera los telómeros; esta es la razón, al parecer, de que estas células puedan dividirse indefinidamente.

* El organizador nucleolar: En algunos cromosomas se encuentra la región del organizador nucleolar (NOR). En ella se sitúan los genes que se transcriben como ARNr, con lo que se promueve la formación del nucléolo y de los ribosomas. Esta zona no se espiraliza tanto y por eso se ve más clara.

* El satélite (SAT): Es el segmento del cromosoma entre el organizador nucleolar y el telómero correspondiente. Sólo poseen satélite aquellos cromososmas que tienen NOR.